
Classical realizability in the CPS target language

Jonas Frey

Piriapolis, 20 July 2016

article:
https://sites.google.com/site/jonasfreysite/mfps.pdf

1 / 24

https://sites.google.com/site/jonasfreysite/mfps.pdf

Negative and CPS translation

• Glivenko (1929): A classically provable iff ¬¬A intuitionistically provable
(CBV, works for all connectives except ∀
• Plotkin (1975) uses continuation passing style (CPS) translations to

simulate different evaluation strategies (CBN, CBV) within another

• Felleisen et al. (1980ies) relate CPS translations and control operatos
(like call/cc) on abstract machines

• Griffin (1989) recognizes correspondence between CPS and negative
translations via CH

• in particular, the natural type of call/cc is Peirce’s law (PL)

((A⇒ B)⇒ A)⇒ A

• since PL axiomatizes classical logic, we get an extension of CH to
classical logic – the foundation of Krivine’s realizability interpretation

2 / 24

Classical 2nd order logic with proof terms

• same language as int. 2nd order logic

• proof system extended by one rule for PL

Γ, a : A,∆ ` a : A Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Γ, a : A ` t : B
Γ ` λa . t : A⇒ B

Γ ` t : A⇒ B Γ ` u : A
Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x .A

Γ ` t : ∀x .A
Γ ` t : A[τ/x]

Γ ` t : A
Γ ` t : ∀X n .A

Γ ` t : ∀X n .A
Γ ` t : A[B[~t/~x]/X (~t)]

• realizability model based on operational model for λ-calculus + call/cc :
the Krivine machine (KAM)

3 / 24

The Krivine Machine

Syntax:

Terms: t ::= x | λx .t | t t | cc | kπ | . . . (non-logical instructions)
Stacks: π ::= ε | t ·π (t closed)
Processes: p ::= t ? π (t closed)

reduction relation on processes:

(push) tu ? π � t ? u·π
(pop) (λx . t [x]) ? u·π � t [u] ? π
(save) cc ? t ·π � t ? kπ·π

(restore) kπ ? t ·ρ � t ? π

• non-logical instructions necessary for non-trivial realizability models

• Λ set of closed terms

• Π set of stacks

• Λ?Π set of processes

• PL ⊆ Λ set of quasiproofs, i.e. terms w/o non-logical instructions

4 / 24

Classical realizability

• pole : set ‚ ⊆ Λ?Π of processes closed under inverse reduction

• truth values are sets S,T ⊆ Π of stacks
• realizability relation between closed terms and truth values

t S iff ∀π ∈ S . t ? π ∈‚
• predicates are functions ϕ,ψ : Nk → P(Π) (more generally J → P(Π))

• interpretation JAKρ ∈ Σ of formulas defined relative to valuations
(assigning individuals to 1st order vars and predicates to relation vars)

JX (~t)Kρ = ρ(X)(J~tKρ)

JA⇒ BKρ = {t ·π | t JAKρ, π ∈ JBKρ}
J∀x .AKρ =

⋃
k∈N JAKρ(x 7→k)

J∀X n .AKρ =
⋃
ϕ:Nn→Σ JAKρ(Xn 7→ϕ)

Theorem (Adequation)

If ~x : ~A ` t : B is derivable and ~u J~AKρ then t [~u/~x] JBKρ.
In particular, if B is closed and ` t : B then t JBK.

5 / 24

Consistency

• two ways of degeneracy

• model arising from ‚ = ∅ equivalent to standard model

• ‚ = Λ?Π inconsistent (all formulas realized)

• more generally we have

Lemma

‚ gives rise to a consistent model iff every process t ? π ∈‚ contains a
non-logical instruction.

6 / 24

The termination pole

• one non-logical instruction end denoting termination

Terms: t ::= x | λx .t | t t | cc | kπ| end
Stacks: π ::= ε | t ·π t closed
Processes: p ::= t ? π t closed

• notation: p↓ ⇔ ∃ρ . t ? π �∗ end ? ρ (‘p terminates’)

• termination pole: T = {p ∈ Λ?Π | p↓} set of terminating processes

• for f : N→ {0, 1}, consider the formula

Φ ≡ ∀x . Int(x)⇒ f (x) 6= 0⇒ f (x) 6= 1⇒ ⊥.

• Φ equivalent to ∀x . Int(x)⇒ x = 0 ∨ x = 1, holds in standard model

Theorem

In the model arising from T, Φ is realized iff it f is computable.

7 / 24

The PTIME pole

• To define a pole of ‘PTIME processes’, we augment the syntax with a
special variable α:

Terms: t ::= x | λx .t | t t | cc | kπ| end | α
Stacks: π ::= ε | t ·π t closed
Processes: p ::= t ? π t closed

• α never bound, ‘closed’ means ‘no free vars except α’

• PL = {t ∈ Λ | end 6∈ t} (α may appear in proof-like terms)

• PTIME pole given by

P = {p | ∃P ∈ N[X] ∀σ ∈ {0, 1}∗ . p[σ/α]↓≤P(|σ|)}

8 / 24

Classical realizability in the CPS target language

9 / 24

Motivation

• use explicit negative translation instead of cc

• negative tranlsation doesn’t need full int. logic as target language

• disjunction & minimal negation (w/o ex falso) sufficient

• CPS target language is a term calculus for a system based on n-ary
negated multi-disjunction like ¬(A1 ∨ · · · ∨ An) but with labels and written〈
`1(A1), . . . , `n(An)

〉

10 / 24

The CPS target language

L countable set of labels, `1, . . . , `n, ` ∈ L.

Expressions:

Terms: s, t , u ::= x | 〈`1(x . p1), . . . , `n(x . pn)〉
Programs: p, q ::= t`u | . . . (non-logical instructions)

Reduction of programs:

〈. . . , `(x . p), . . . 〉`t � p[t/x]

11 / 24

2nd order CPS target logic

language consists of

• individual variables x , y , z, . . .

• n-ary relation variables X n,Y n,Z n, . . . for each n ≥ 0

• arithmetic constants and operations 0,S, . . .

• formulas: A ::= X n(~t) | ∃x .A | ∃X n .A |
〈
`1(A1), . . . , `n(An)

〉
n ≥ 0

proof system with proof terms:

(Var)
Γ ` xi : Ai

(App)
Γ ` t :

〈
. . . , `(B), . . .

〉
Γ ` u : B

Γ ` t`u

(Abs)
Γ, y : B1 ` p1 · · · Γ, y : Bm ` pm

Γ ` 〈`1(y . p1), . . . , `m(y . pm)〉 :
〈
`1(B1), . . . , `m(Bm)

〉
(∃-I)

Γ ` t : A[u/x]

Γ ` t : ∃x .A
(∃-E)

Γ ` t : ∃x .A Γ, x : A ` p[x]

Γ ` p[t]

(∃-I)
Γ ` t : A[B[~u/~x]/X (~u)]

Γ ` t : ∃X n .A
(∃-E)

Γ ` t : ∃X n .A Γ, x : A ` p[x]

Γ ` p[t]

12 / 24

Admissible rules & subject reduction

Admissible rules:

(Cut)
Γ ` s : A Γ, x : A ` p

Γ ` p[s/x]

Γ ` s : A Γ, x : A ` t : B
Γ ` t [s/x] : B

(Sym)
Γ ` p

σ(Γ) ` p
Γ ` t : B

σ(Γ) ` t : B

(Weak)
Γ ` p

Γ, x : A ` p
Γ ` t : B

Γ, x : A ` t : B

(Contr)
Γ, x : A, y : A ` p
Γ, x : A ` p[x/y]

Γ, x : A, y : A ` t : B
Γ, x : A ` t [x/y] : B

Lemma (Subject reduction)

If Γ ` 〈. . . , `(x . p), . . . 〉`t is derivable, then so is Γ ` p[t/x].

13 / 24

Simplified notation suppressing labels

• Assume L = N
• Write ¬(A0, . . . ,An−1) and 〈x1 . p0, . . . , x1 . pn−1〉 for record types and

terms indexed by {0, . . . , n − 1}
• if indexing set is not an initial segment of N, write − for undefined entries

14 / 24

CBV translation of classical 2nd order logic into 2nd order target language

I give translation for types only, terms left as an exercise.

• (A⇒ B)> = ¬¬(¬A>,B>)

• (∀x .A)> = ¬∃x .¬A>

• (∀X n .A)> = ¬∃X n .¬A>

Theorem

A1, . . . ,An ` A classically provable iff A>1 , . . . ,A
>
n ` ¬¬B> provable in target

language.

15 / 24

Realizability in the CPS target language

• T set of closed terms, T0 set of pure closed terms (prooflike terms)
• P set of closed programs
• pole : ‚ ⊆ P closed under inverse �
• truth values : S,T ⊆ T
• interpretation JAKρ ⊆ T of formulas defined relative to valuations

JX (~t)Kρ = ρ(X)(J~tKρ)

J
〈
`1(A1), . . . , `n(An)

〉
K
ρ

= {t ∈ T | ∀i ∈ {1, . . . , n} ∀s ∈ JAiKρ . t`i s ∈‚}
J∃x .AKρ =

⋃
k∈N JAKρ(x 7→k)

J∃X n .AKρ =
⋃
ϕ:Nn→Σ JAKρ(Xn 7→ϕ)

Adequation/Soundness

• If ~x : ~A ` s : B and~t ∈ J~AKρ then s[~t/~x] ∈ JBKρ
• If ~x : ~A ` p and~t ∈ J~AKρ then p[~t/~x] ∈‚

Combined with negative translation

If ~x : ~A ` s : B is classically provable and~t ∈ J~A>Kρ then s>[~t/~x] ∈ J¬¬B>Kρ.

16 / 24

Ordering on predicates

• ‚ fixed pole

• generalize predicates to arbitrary carrier sets: a predicate on J ∈ Set is
a function ϕ : J → P(T)

• predicates on J can be ordered

ϕ ≤ ψ iff ∃t [a, b] ∈ T0[a, b] ∀j ∈ J ∀u ∈ ϕ(j) ∀v ∈ ¬ψ(i) . t [u, v] ∈‚
• intuitively : the judgment ϕ(j),¬ψ(j) ` is realized

17 / 24

Predicates form a Boolean tripos

• The assignment J 7→ (P(Π)J ,≤) extends to an indexed preorder, i.e.
a functor

K‚ : Setop → Ord

Theorem

K‚ is a Boolean tripos, i.e.

• fibers K‚(J) are Boolean prealgebra for all J ∈ Set
• reindexing maps K‚(f) : K‚(I)→ K‚(J) preserve Boolean prealgebra

structure for all f : J → I

• reindexing maps have right adjoints K‚(f) ` ∀f : K‚(J)→ K‚(I), and

for all pullback squares
L

q
//

p ��

K
g��

J f // I
we have K‚(g) ◦ ∀f ∼= ∀q ◦K‚(p)

• there exists tr ∈ P(Prop) such that for every I ∈ Set and ϕ ∈ P(I) there
exists f : I → Prop with K‚(f)(tr) ∼= ϕ

18 / 24

Internal logic of a tripos

We can use (higher order) predicate logic as notation and calculational tool
for constructions in P.

E.g. for ϕ ∈ P(A× B), ψ ∈ P(B × C), write

θ(x , z) ≡ ∃y . ϕ(x , y) ∧ ψ(y , z)

instead of

θ = ∃∂1 (∂2
∗ϕ ∧ ∂0

∗ψ).

A× B

A× B × C

∂2

OO

∂1 //

∂0��

A× C

B × C

Given predicates ϕ1, . . . , ϕn, ψ ∈ P(A1×. . .×Ak), say that the judgment

ϕ1(~x), . . . , ϕn(~x) ~̀x ψ(~x)

is valid, if
ϕ1 ∧ · · · ∧ ϕn ≤ ψ in P(A1×. . .×Ak).

More generally, ϕ1 . . . ϕn, ψ can be formulas instead of (atomic) predicates.

Validity relation closed under deduction rules for classical predicate logic.

Lawvere: Equality predicate on A is given by ∃δ>, where δ : A→ A× A

19 / 24

The tripos-to-topos construction
For any tripos P : Setop → Ord we define a category Set[P] as follows.

Definition

Set[P] is the category where

• objects are pairs (A ∈ Set, ρ ∈ P(A× A)) such that
(sym) ρ(x , y) ` ρ(y , x)

(trans) ρ(x , y), ρ(y , z) ` ρ(x , z)

• morphisms (A, ρ)→ (B, σ) are (equivalence classes of) predicates
φ ∈ P(A× B) such that

(strict) φ(x , y) ` ρx ∧ σy [short for ρ(x , x) ∧ σ(y , y)]
(cong) ρ(x , x ′), φ(x ′, y), σ(y , y ′) ` φ(x , y ′)

(sv) φ(x , y), φ(x , y ′) ` σ(y , y ′)
(tot) ρx ` ∃y . φ(x , y)

• φ, φ′ ∈ P(A× B) are identified as morphisms, if φ ∼= φ′

• composition is relational composition

Lemma

For any tripos P : Setop → Ord, Set[P] is a topos with a natural numbers
object

20 / 24

Conjunction as intersection

• tripos-to-topos construction only uses ∧, ∃
• ∃ has easy representation, but encoding of ∧ involves

double-dualization, complicating computations

• for reasonable poles, there is an easier representation as intersection
type

21 / 24

Syntactic order, support

Definition

Given a record
t = 〈`(x . p) | ` ∈ F 〉

and a set M ⊆ L of labels, define the restriction of t to M to be the record

t |M = 〈`(x . p) | ` ∈ F ∩M〉.

The syntactic order v on terms and programs is the reflexive-transitive and
compatible closure of the set of all pairs (t |M , t)

Definition

A pole ‚ is called strongly closed, if it satisfies the conditions

p →β q, q ∈‚ ⇒ p ∈‚ and

p v q, p ∈‚ ⇒ q ∈‚.

A truth value S ⊆ T is called strongly closed, if it satisfies

t →β u, u ∈ S ⇒ t ∈ S and

t v u, t ∈ S ⇒ u ∈ S.

22 / 24

Support, intersection

Definition

A truth value S is said to be supported by a set M ⊆ L of labels, if we have
s|M ∈ S for every s ∈ S. More generally, a predicate ϕ ∈ P(T)J is said to be
supported by M, if ϕ(j) is supported by M for all j ∈ J.

Theorem

Let ϕ,ψ ∈ P(T)J be predicates that are both pointwise strongly closed, and
supported by disjoint finite sets F and G of labels, respectively. Then the
predicate ϕ ∩ ψ, which is defined by (ϕ ∩ ψ)(j) = ϕ(j) ∩ ψ(j), is a meet of ϕ
and ψ and is supported by F ∪G.

If ‚ is strongly closed, then every predicate is equivalent to a finitely
supported strongly closed predicate, and they are closed under the logical
operations.

23 / 24

Thanks for your attention!

24 / 24

